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The assumption that the original state of a system is an. ideal one lies 
at the basis of the stability analysis of elastic systems. For example, 
in the St8bility of elastic rods one assumes that the axis is straight, 
that the material is uniform and that the compressive forces are applied 
centrally. fn the stability of plates, one assumes that initial deflection 
is absent and that the external forces are applied only at the middle 
surface. 

In actuality, real systems differ from the ideal in one way or 8n- 
other. In Bpost cases the *difference does not lead to serious dis- 
crepancies between theory and experiment. The condition for the critical 
state of 811 ideal system differs only slightly from the condition for 
the excessive distortion of a real system. 

Nevertheless,. there are problems in which neglect of the differences 
from ideal have led to substantial errors. One such problem is that of 
the stability of a spherical shell loaded by uniformly distributed pre$- 
sure (Fig. 1). 

1. We assurae that the real shell has a small deviation from the 
ideal. Let the deviation of the surface from the spherical form be 
specified for simplicity by a single parawter f. 

Under the action of external pressure the shell acquires a local 
bending w. The nature of the relation p = p(w) is determined by the 
value of f (Fig. 2). 

The ordinate is the pressure p expressed as a nondimensional 
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parameter 

The loss of stability occurs suddenly. 
For example, for f = fJ the pressure rises 
only up to the value pO(A) fat the point A), 
after which there occurs a sudden passage 
to a new form of equilibrium (point B). ‘lbe 
pressure p’(A) increases with a reduction 
in the parameter f. With f = 0 we have 

Fig. 1. 

PR2 - 0.606 -- p” = 2Eh2 

that is, the value of the critical pressure given by the classical 
theory for an ideal system. 

The small but real deviations of the system from the ideal show in 
this case as strong an effect on the equilibrium state as is shown by 
tests on the loss of stability, which indicate that 

PO(A) = 0.10 to 0.15 

instead of the expected p” = 0.606. ‘Ibe shaded 
the probable zone of the 1 oss of stability. 

portion of Fig. 2 shows 

Indeed, the ordinary analysis of an ideal- 
ized system does not lead to satisfactory re- 
sults in this case, To make an exact deter- 

mination of the 
critical pressure 
would require a sta- 
tistical analysis of 
the errors arising 

_--__------ 

Fig. 2. 

from the preparation 
and testing of the 
shell. The solution of 
such a problem does 

W not appear possible at 
the present time. 
There arises in this 

connection the concept of stability in the large, in accordance with 
which one may attack such problems from a statistical approach, limited 
as before to idealized systems but now in the region of large displace- 
ments. As a result of one such solution the curve p*= p”(ut) is deter- 
mined in Fig. 2 for the case f = 0; the so-called lower critical pres- 
sure pzi, is found, which is a lower limit to the possible critical 
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pressure. Loss of stability is considered to be probable within the 
interval 

p 
0 

min < P” < P*’ 

‘I&s, there arises the problem of the determination of the form of 
equilibrium of a spherical shell in the region of large displacements. 

The first attempt at a solution of this problem was made by von 
K&u&n and Tsien El 1. The authors Bade the assumption that the bending 
of the shell was of a local nature and that the dimpled zone was in- 
eluded within small angles 8 (Fig. 3). Other authors also found this 
assumption to be convenient. The problem was 
solved by an energy method in [ 1 1. They con- 
sidered that no shell deformation took place 
beyond the limits of the dimple and that with- 
in the dimple the circumferential strain c2 
was zero. Conditions imposed later were un- 

& 

ffi 

justified and led to false results. 

Many attempts to solve this problem were 
made following von R&m&n and Tsien. Some 

Fig. 3. 

authors (see, for example, [ 2 1 and 13 1) used the variationaL methods 
of Ritz and Galerkin and invariably obtained values for the lower 
critical pressure of the order of pzin from 0.13 to 0.40, depending upon 
the shape of the function selected and upon the method used. It is clear 
that the pressure pzin = 0.13 is too high, since experiments give p’(A) 
from 0.10 to 0.15, and pzin must be still smaller. 

An attempt was made in 1954 to show that the value of pzin must be 
negative and that consequently there must exist forms of equilibrium of 
a dimpled spherical shell in the absence of pressure 14 1. The problem 
was solved by the Galerkin method. The dimpled zone resisted the remain- 
ing part of the shell through an intermediate zone of local bending, 
with the geometric and force conditions fully maintained. The oafcula- 

tion gave pzin = - 0.13. 

This work was criticized by Mushtari [5 1. who by a different vari- 
ational method but with the same approximation function obtained pzin = 
+ 0.1. These results were seen as proof of the high degree of sensitiv- 
ity of the solution to the variational method used and to the choice of 
approximation function. It became clear that the use of the variational 
method is exhausted for this problem. 

Thus the problem of the determination of the lower critical pressure 
has acquired not only a practical but also a theoretical interest. 
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The first attempts to apply variational methods to the solution of 
nonlinear equations of equilibrium for a spherical shell were made 
numerically by Keller and Reiss [ 6 1 and by Murray and Wright [ 7 1 . These 
papers solved the problem of the equilibrium of a shallow cupola clamped 
around the edge. Unjustifiably, the solution was carried over to the 
closed sphere. The force boundary conditions on the contour of the 
dimple do not agree with those in the unbent portion of the shell. The 

calculation provided for a choice of ratios of radius to thickness R/h. 

The solution proposed is a numerical one for the nonlinear equations 
of a spherical cupola, obtained with the aid of high-speed machines. The 
solution is independent of the parameter R/h and is exact within the 
limits of applicability of the equations for shallow shells. 

2. We take the dimple on the sphere to be of relatively small di- 
mensions. It is therefore permissible to consider the shell as shallow 
in the dimpled zone. Such an approach is universally adopted today and 
leads to no contradictions. 

VIhe equations for a shallow spherical shell in the assumed axially- 
symnetric forms of equilibrium have the following form E4,8 I : 

(2.1) 

Here 

h=12(1-@)$, v=:hP’” 
2Eh (2.2) 

where T1 is the radial tensile force, 6 the angle of rotation of the arc 
meridian, r1 any arbitrarily fixed radius (Fig. 4), and 8, is the angle 

of slope of the shell at this radius. 

In these equations one may set sin 9 = tan 6 2: 
0, or O2 << 1. 

It is convenient to take for the value of rl 

the radius R of the sphere. Since 8, = rl,&, 

then 8, = 1. 

‘Ihe region of applicability of Equations (2.1) 
is evidently determined by the ratio 

Fig. 4. 

In order to be free of the parameter R/h, we introduce new variables 
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x, 0andYin place ofp, 6 and $, 

The system of equations (2.1) then takes the form 

where 

(2.3) 

(2.4) 

(2.5) 

and in agreement with (2.2) and (2.3) 

2 = +[$12(1-$)]"', 0 = 6[-$2(1 -pr)T 

(2.6). 
T= -&((T,+9[;12(1-p2)1" 

Thus, the variable n represents a nondimensional radius, the function0 
gives a measure of the angle of rotation of a meridian arc on a certain 
scale, and the function ty shows that the radial tension T1 differs from 
its value pR/i? in the momentless state. It follows from the first of 
Equations (2.6) that the system (2.4) holds for values 

(2.7) 

We note that the proposed change in the equations is possible also 
for nonsymnetrical forms of equilibrium of spherical and cylindrical 
shells. Generally, it becomes necessary to represent the critical loads 
as a function of the parameter R/h, as is frequently done. 

At the center of the dimple for r = 0 we have 0= 0 and Y= 0, and 
outside the limits of the dimple (at infinity) the momentless state must 
be conserved; i;e. 0= 0 and YE 0 (since T, = - p R/2). 

We divide the region of variation of x into two parts: 

Beyond %k we take a high enough value of x so that the decaying func- 
tion may be considered as negligibly small compared to x. It is clear 
that the choice of %k depends upon the magnitude of the displacements 
assumed for the solution of the problem. 

Ihe system (2.4) is linearized for x > %k and takes the form 
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(2.5) 

(2.9) 

3. We construct first the solution in the region x > xk. 

Equation (2.8) is satisfied if one takes 

0 = CH, (az), Y? = - ; H, (“X) 

where Hl(ax) is the Hankel function of index one and a is an undeter- 
mined parameter. By substitution of 0 and Y in Equation (2.9) we get 

a”=!&& --I 
r/ 

PO2 
4 

‘Ihe smallest pa for which the parameter a has a real value will be 

PO = 2 

With this the external pressure p, for ~1 = 0.3, takes on the upper 
critical value 

R= p,o = &. =: 0.606 

which follows from Expression (2.5). 

We are interested in the forms of equilibrium for p smaller than the 
upper critical value; i.e. for pO < 2. Therefore 

From this we get 

a=$t/2+po+ i+v2-pp, Z=+v2+p,- i+jfZpO 

We have, correspondingly, two conjugate Hankel functions; then 

0 = c H Cl1 (ax) -+ C2H1(‘) (as) 1 1 

Y = - Cl&HP(m) - Ca -$p) (5x) 
(3.1) 

Here the Hankel functions are taken to be of the first kind, vanish- 

ing at infinity. Let 

I&(*) (cc5) = x, + ir,, I&(I) (G) = x, - iY, (3.2) 

c* = +(c--Di), C‘J ==f(C +Di) (3.3) 
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lben 

O=CX,fDY, (3.4) 

Y =-c(+xI+lJTqYr) -D(qY,-+qxJ (3.5) 

The derivatives of 0 and Y will be required. In accordance with the 
rules for differentiation of cylindrical functions we obtain from Ex- 
pressions (3.1) 

de 
- = cro&f’) (CCC) + C~~~~~l) (G) - 10 
dX X 

dY 
- = - $_ Jyoflf (as) - +L H,[l) i;r++ y 
dX 

Here Zfa”‘(a xl is the Hankel function of the first kind and zero 
order. By making use of the notation in (3.2) and (3.3) we obtain 

in which by analogy with Expressions 

H 0 (I) (ax) = X, + iY 0, 

-- i Pl] 2 @f9 

+ $+xl+;t/l+Y1]+ 

++J$yr -;/-1-+ x1] (3.7) 

(3.2) we denote 

H,(l) (G) = x, - iY, (3.81 

‘lhe displacements along the normal to the middle surface of the shell 
are, taking account of (2.3) 

W== Y@di, 

co 

or zu=R’@dz 
L’iZ i (3.9) 

I. x 

Upon substitution of 0 from (3.1) we get 

~=_A!_. 
i 
_!?L Ii,(l) (az) + cz H,(l) (G) 

h’12 a a 1 

and upon passing to real functions 

(3.10) 

‘thus, the solution of the problem in the linear region is obtained in 
X,, Y,, Xc, Ye functions, which themselves represent the real and 
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imaginary parts of a Hankel function with a complex argument. These 
functions are not tabulated and computational methods are required. 

We shall assume that the value of xk is large enough not only for non- 
linearity to be neglected but also large enough to permit the use of 
asymptotic expansions. 

‘Ibe Hankel function of the first kind and of order c has the form in 

an asymptotic expansion 

&flf (2) = 1/ z g&p li (Z - + xc - -2, s,] r] (-- Qrn [CT mf 
m=o, 1, 2,... (2izy 

i 
@ 

t 
in) = (46% - 12) (4c2 - 32). . * [4@ - (am - f)a] 

In! zm J 

For calculation of the functions X, and Y,, the function must be 
separated into real and imaginary parts, setting c = 1 and z = ax. For 
the functions X0 and Y, one must take c = 0. 

We get after transformation 

Here 

.- 
105 (i+ ~0) fi - PO + 4725 (I - “I2 ~02) + 

256~9 2048x4 

+ 
72765 (- I+ PO + PO21 v2 - Pn 

16384x5 
2837835 p0 (3 - po2) i- 

-1024 f2B26 ’ * * 

q1 = 3V2 + p. 
-__ 

8x , _ I5 cx- PC? + 105 (1 -;Tex~ + PO + 47252$;f _ 
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- 72765(1+w-~o~)1/2+~o+ 2837835 s(l-~p,2)1/4-~p,n +. .. 
16384x5 1024 128x6 

75 (1 +;;I$ - po _ 3675 f---xz PO’) _ ;bo2 I 

- 59535 (- I+ P,, + po”) 1/2 - po + 2401245 PO (3 -P$) + 
16384x5 1024 128x” * ’ * 

Q. = 3675~~~~-poz + 1/2’?;Tp, ; 9u’4---po2 75(1-PO) 1/2 + pn 
8x 64x2 - 256x3 

+ 59535 (1-t PO - Pea) VmG 
16384x6 

2401245 (1 - ~2) t’4 - p=’ + 
-1024 128x6 

. . . (3.12) 

4. k! return now to the “nonlinear” part 0 4 x ( Xk. ‘Ihe region of 
variation of x is bounded on the right. In addition, only one parameter 

p0 remains, and so there is the possibility of numerical integration of 
the system joining up with the solution at the boundary x = zk. & intro- 
duction of the notation 

de dY -:a 
dx ’ -&?=” 

we rewrite the system (2.4) in finite differences 

(4-f) 

AV+3t_ &$+f]Ax 

Au= -.-~-,,-~+-~]A, [ (4.2) 

The 
remain 

and u,, 

A8 = uAx, AY = VAX 

functions Y and @must be zero at x = 0. The functions IA and v 
indeterminate at x = 0. By postulating a series of values of u0 
and integrating from n = 0 to x = xi, we choose u0 and vu so that 

the continuity of the functions on the boundary is assured. 

At x = xk there are evidently four conditions to be satisfied 

(4.3) 

(4.4) 

where on the one hand the functions are found from numerical integration 
of the nonlinear system and on the other hand are determined from Ex- 
pressions (3.4) to (3.7) in the linear system. 

Condition (4.3) determines the equality of angles and moments on the 
boundary, and condition (4.4) determines the equality of meridiau forces 
and displacements in the middle surface. 



1638 A.G. Gabril’iants and V.I. Feodos’ev 

Upon returning to Expressions (3.4) to (3.10) and (4.1), we obtain 

the continuity condition in the following form: 

'Ihe constants C and D are determined from the first two equations and 
are substituted in the other two. Finally, we obtain the following two 

equations: 

where 

h,=: ( xoky,k - ~-my,k) 1/z + PO $. (x(&q, + Y,,,Y,,) I/a-p0 1 

--_ 
cx,; + Y,lc”, 1/4--s s h’ 

E!y making use of the asymptotic expansions (3.11) and (3.12), one may 

express the last equations in the form 

h-, L --&- 
1/2--p, 

_:_ 1899 (1 t- PO - po2) 
16x,G *” I (4.6) 
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-- 
_ 1 _ 3 l.1 - PO) _ 3Po v2 - PO + 63 (1 -+ PO - w2J 

2Xk2 Xk3 8Xh4 - 

- 25(1-J&)2)1/2-po +1x99(1-22p,-po~+po3)+ 
xkb lBx,S *. . 

I 

5. ‘Ibe following numerical examples are presented. 

We specify the value of pO in advance as that pressure for which it 
is necessary to find possible forms of equilibrium for a sphere with an 
elastic dimple. Since we are interested in pressures less than the upper 
critical pressure, p. d 2. 

Fig. 5. 

In addition we also fix the value of xR. On one hand, this value must 
be large enough for all the nonlinearities of the problem to be contain- 
ed within the interval 0 =G x <xi; it must also be large enough for 
application of the conditions of asymptotic expansion. On the other hand 
it is desirable to keep it small 

in order not to increase the 
numerical work unduly. 

The value xk = 10 was taken 
in the calculations. 

In certain cases the choice 
of a large value of .zt may lead 
to contradictions with the basic 
assumptions applicable to the 
equations of shallow shells. It 

t- 

Fig, 6. 

is easy to take into account the limits of variation in x for correspond- 
ing values of R/h. 
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From the assumed values of p. and X& we calculate the coefficients 
K,, Kz and K, from Formulas (4.6). For example, for p. = 1 and xk = 10 
we have K, = - 0.01445, K, = 0.98’78, K, = - 1.0022. Then, by taking a 
series of values d@/dx = I+,, dY /dx = v. for x = 0, we proceed with the 
numerical integration from x = 0 to x = xk according to (4.2). As a re- 
sult of the integration we find values of uk, vk, @k and YIr,, which may 
then be substituted in Equations (4.5). To find the decaying solution 
we select those values of ue and v0 which satisfy the two equations of 
(4.5) simultaneously. 

An electronic calculating machine was used in this work. 

Tentative trials were made at first. They showed that for a fixed 

value of p. there is a multiplicity of 

Fig. 7. 

#- 

Fig. 8. 

integrals of bations (4.2) for 

different values of u0 (from -7 
to +7) and v0 (from -3 to +2) 
with intervals AU,, = AU, = 0.2. 
‘Ibe integration proceeded with 
steps of Ax =-0.1. 

As a result of the preliminary 
trials no and u. were determined 
as the values which reduced the 
left-hand sides of Equations 

(4.5) to zero. Two families 
of curves are shown by the 
crosses and the circular 
points of Fig. 5. Their 
intersection determines the 
unknown roots I+, and vO. 
These curves are shown in 
Fig. 5 for pen = 1 (p” = 
0.303) and the bracketed 
numbers denote roots. Cor- 
responding curves for p0 = 
0.1 (p” = 0.0303) are shown 
in Fig. 6. The points of 
intersection of the curves 
(exclusive of the zeropoint) 
were not observed. 

Next, the interval of variation of u. and ua was contracted as deter- 
mined by the distribution of roots, and the coordinates of the points of 
intersection were obtained more exactly, The calculation of the roots 
must be carried out to the 4th or 5th significant figure. Figure 7 shows 
the distribution of the basic groups of roots. 
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lhe final integration of Equation (4.2) provides more exact values of 
ua and v,, with the functions obtained. Integration of the function 0 

Fig. 9. 

obtained in accordance with (3.9) gives the form of the elastic surface 
and the value of the ~xirn~ deflection. Figure 8 shows an example of 
the functions '4 and m/h for two roots with pe = 0.25 (p" = 0.071). 

Ihe solution obtained was subjected to a number of control checks. 

In particular, the numerical integration was carried out beyond the 
limit xk. The functions obtained coincide with the functions found from 
the linear system. 

The calculation was made for values of xk > 10. The solution does not 
depend on the value of zk. This is confirmed by the fact that for x,=10 
all nonlinearity is within the interval 0 < x < rk. 

Finally, for i~rov~nt in the accuracy of the solution, the inte- 
gration step was reduced to 0.01 with Ax = 0.1, which led to changes in 
the unknown function only in the 3rd figure. Further refinement was not 
necessary. 

Figure 9 shows a suavnary of the results obtained. The continuous 
curve corresponds to the basic form of equilibrium. Numbers 1 and 2 show 
the points for which the functions '4 and w/h were given in Fig. 8. l'he 
lower critical pressure is pzi, = 0.06 at a value of relative deflection 
w/h = 22 to 23. 

The broken lines in Fig. 9 show the curves corresponding to the 
higher forms of equilibrium. 
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The value of pii, obtained will be as exact in the same measure as 

the applicability of the equations for shallow shells. This does not 

exclude a change in the value when a more exact system of equations is 

used. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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